Benchmark ConvGru - 2020 April 14

[1]:
import datetime

import numpy as np
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
import seaborn as sns

from tst.loss import OZELoss

from src.benchmark import BiGRU, ConvGru
from src.dataset import OzeDataset
from src.utils import compute_loss
from src.visualization import map_plot_function, plot_values_distribution, plot_error_distribution, plot_errors_threshold, plot_visual_sample
[2]:
# Training parameters
DATASET_PATH = 'datasets/dataset_CAPT_v7.npz'
BATCH_SIZE = 8
NUM_WORKERS = 4
LR = 1e-4
EPOCHS = 30

# Model parameters
d_model = 48 # Lattent dim
N = 2 # Number of layers
dropout = 0.2 # Dropout rate

d_input = 38 # From dataset
d_output = 8 # From dataset

# Config
sns.set()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device {device}")
Using device cuda:0

Training

Load dataset

[3]:
ozeDataset = OzeDataset(DATASET_PATH)

dataset_train, dataset_val, dataset_test = random_split(ozeDataset, (38000, 1000, 1000))
[4]:
dataloader_train = DataLoader(dataset_train,
                              batch_size=BATCH_SIZE,
                              shuffle=True,
                              num_workers=NUM_WORKERS,
                              pin_memory=False
                             )

dataloader_val = DataLoader(dataset_val,
                            batch_size=BATCH_SIZE,
                            shuffle=True,
                            num_workers=NUM_WORKERS
                           )

dataloader_test = DataLoader(dataset_test,
                             batch_size=BATCH_SIZE,
                             shuffle=False,
                             num_workers=NUM_WORKERS
                            )

Load network

[5]:
# Load transformer with Adam optimizer and MSE loss function
net = ConvGru(d_input, d_model, d_output, N, dropout=dropout, bidirectional=True).to(device)
optimizer = optim.Adam(net.parameters(), lr=LR)
loss_function = OZELoss(alpha=0.3)

Train

[6]:
model_save_path = f'models/model_LSTM_{datetime.datetime.now().strftime("%Y_%m_%d__%H%M%S")}.pth'
val_loss_best = np.inf

# Prepare loss history
hist_loss = np.zeros(EPOCHS)
hist_loss_val = np.zeros(EPOCHS)
for idx_epoch in range(EPOCHS):
    running_loss = 0
    with tqdm(total=len(dataloader_train.dataset), desc=f"[Epoch {idx_epoch+1:3d}/{EPOCHS}]") as pbar:
        for idx_batch, (x, y) in enumerate(dataloader_train):
            optimizer.zero_grad()

            # Propagate input
            netout = net(x.to(device))

            # Comupte loss
            loss = loss_function(y.to(device), netout)

            # Backpropage loss
            loss.backward()

            # Update weights
            optimizer.step()

            running_loss += loss.item()
            pbar.set_postfix({'loss': running_loss/(idx_batch+1)})
            pbar.update(x.shape[0])

        train_loss = running_loss/len(dataloader_train)
        val_loss = compute_loss(net, dataloader_val, loss_function, device).item()
        pbar.set_postfix({'loss': train_loss, 'val_loss': val_loss})

        hist_loss[idx_epoch] = train_loss
        hist_loss_val[idx_epoch] = val_loss

        if val_loss < val_loss_best:
            val_loss_best = val_loss
            torch.save(net.state_dict(), model_save_path)

plt.plot(hist_loss, 'o-', label='train')
plt.plot(hist_loss_val, 'o-', label='val')
plt.legend()
print(f"model exported to {model_save_path} with loss {val_loss_best:5f}")
[Epoch   1/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.53it/s, loss=0.00635, val_loss=0.00301]
[Epoch   2/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.56it/s, loss=0.00241, val_loss=0.0019]
[Epoch   3/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.54it/s, loss=0.00177, val_loss=0.0015]
[Epoch   4/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.51it/s, loss=0.00147, val_loss=0.00152]
[Epoch   5/30]: 100%|██████████| 38000/38000 [07:39<00:00, 82.63it/s, loss=0.00126, val_loss=0.00126]
[Epoch   6/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.56it/s, loss=0.00111, val_loss=0.00103]
[Epoch   7/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.53it/s, loss=0.000981, val_loss=0.00103]
[Epoch   8/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.57it/s, loss=0.000876, val_loss=0.000755]
[Epoch   9/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.49it/s, loss=0.000778, val_loss=0.000698]
[Epoch  10/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.58it/s, loss=0.000688, val_loss=0.000631]
[Epoch  11/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.55it/s, loss=0.00062, val_loss=0.000549]
[Epoch  12/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.43it/s, loss=0.000561, val_loss=0.000497]
[Epoch  13/30]: 100%|██████████| 38000/38000 [07:41<00:00, 82.34it/s, loss=0.000514, val_loss=0.000461]
[Epoch  14/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.50it/s, loss=0.000478, val_loss=0.000513]
[Epoch  15/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.49it/s, loss=0.000447, val_loss=0.000399]
[Epoch  16/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.48it/s, loss=0.000424, val_loss=0.000407]
[Epoch  17/30]: 100%|██████████| 38000/38000 [07:41<00:00, 82.30it/s, loss=0.000401, val_loss=0.000382]
[Epoch  18/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.53it/s, loss=0.000381, val_loss=0.000346]
[Epoch  19/30]: 100%|██████████| 38000/38000 [07:41<00:00, 82.38it/s, loss=0.000365, val_loss=0.00035]
[Epoch  20/30]: 100%|██████████| 38000/38000 [07:40<00:00, 82.47it/s, loss=0.000351, val_loss=0.000329]
[Epoch  21/30]: 100%|██████████| 38000/38000 [06:04<00:00, 104.30it/s, loss=0.000335, val_loss=0.000313]
[Epoch  22/30]: 100%|██████████| 38000/38000 [03:08<00:00, 201.75it/s, loss=0.000323, val_loss=0.000329]
[Epoch  23/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.14it/s, loss=0.000313, val_loss=0.000291]
[Epoch  24/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.21it/s, loss=0.0003, val_loss=0.000302]
[Epoch  25/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.71it/s, loss=0.000294, val_loss=0.000298]
[Epoch  26/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.67it/s, loss=0.000284, val_loss=0.000279]
[Epoch  27/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.40it/s, loss=0.000276, val_loss=0.000265]
[Epoch  28/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.67it/s, loss=0.000272, val_loss=0.000265]
[Epoch  29/30]: 100%|██████████| 38000/38000 [03:07<00:00, 203.04it/s, loss=0.000265, val_loss=0.000248]
[Epoch  30/30]: 100%|██████████| 38000/38000 [03:07<00:00, 202.93it/s, loss=0.000258, val_loss=0.000281]
model exported to models/model_LSTM_2020_04_14__101819.pth with loss 0.000248

../../_images/notebooks_trainings_training_2020_04_14__143020_10_3.png

Validation

[7]:
_ = net.eval()

Evaluate on the test dataset

[8]:
predictions = np.empty(shape=(len(dataloader_test.dataset), 168, 8))

idx_prediction = 0
with torch.no_grad():
    for x, y in tqdm(dataloader_test, total=len(dataloader_test)):
        netout = net(x.to(device)).cpu().numpy()
        predictions[idx_prediction:idx_prediction+x.shape[0]] = netout
        idx_prediction += x.shape[0]
100%|██████████| 125/125 [00:01<00:00, 82.73it/s]

Plot results on a sample

[9]:
map_plot_function(ozeDataset, predictions, plot_visual_sample, dataset_indices=dataloader_test.dataset.indices)
../../_images/notebooks_trainings_training_2020_04_14__143020_16_0.png

Plot error distributions

[10]:
map_plot_function(ozeDataset, predictions, plot_error_distribution, dataset_indices=dataloader_test.dataset.indices, time_limit=24)
../../_images/notebooks_trainings_training_2020_04_14__143020_18_0.png

Plot mispredictions thresholds

[ ]:
map_plot_function(ozeDataset, predictions, plot_errors_threshold, plot_kwargs={'error_band': 0.1}, dataset_indices=dataloader_test.dataset.indices)